Support Astromart! | Log In | Help
Astronomy NewsTelescope ClassifiedsTelescope AuctionsTelescope Articles & ArticlesTelescope Articles & ReviewsTelescope and Astronomy ForumsAstronomy Events Calendar
Current Astronomy News
Search Archives
Submit A Story

User Name:

Password:

Save Login
 
New to Astromart?
Register an account...

Terms of Service
Privacy Policy
Help & FAQ
Astronomy Links
User Profiles
Top Users List
Sponsors
Supporters
RSS Feeds

Stray Black Hole "Bullet" Zipping Through the Milky Way
Posted by Guy Pirro on 2/8/2017 3:59 PM


Artist's impression of a stray black hole storming through a dense gas cloud. The gas is dragged along by the strong gravity of the black hole to form a narrow gas stream. (Image Credit: Keio University)


| 0 Comments... |

By analyzing the gas motion of an extraordinarily fast moving cosmic cloud in a corner of the Milky Way, astronomers have detected hints of a wandering black hole hidden in the cloud. Millions of lone black holes are believed to be zipping through the Milky Way, although only a few dozen have been found to date.

That is because it is difficult to find black holes since they are completely black. In some cases black holes cause effects which can be seen. For example if a black hole has a companion star, gas streaming into the black hole piles up around it and forms a disk. The disk heats up due to the enormous gravitational pull by the black hole and emits intense radiation. But if a black hole is floating alone in space, no emissions would be observable coming from it.

A research team led by Masaya Yamada, a graduate student, and Tomoharu Oka, a professor at Keio University in Japan, used the ASTE Telescope in Chile and the 45 meter Radio Telescope at Nobeyama Radio Observatory, both operated by the National Astronomical Observatory of Japan, to observe molecular clouds around the supernova remnant W44, located 10,000 light years away from us. Their primary goal was to examine how much energy was transferred from the supernova explosion to the surrounding molecular gas. But in the process, they found signs of a hidden black hole at the edge of W44.

During the survey, the team found a compact molecular cloud with enigmatic motion. This cloud, named the "Bullet," has a speed of more than 100 km/s. In addition, this cloud, with a size of two light years across, moves backward against the rotation of the Milky Way Galaxy.

To investigate the origin of the Bullet, the team performed intensive observations of the gas cloud with ASTE and the Nobeyama 45 meter Radio Telescope. The data indicate that the Bullet seems to jump out from the edge of the W44 supernova remnant with immense kinetic energy. "Most of the Bullet has an expanding motion with a speed of 50 km/s, but the tip of the Bullet has a speed of 120 km/s," said Yamada. "Its kinetic energy is a few tens of times larger than that injected by the W44 supernova. It seems impossible to generate such an energetic cloud under ordinary environments."

The team proposed two scenarios for the formation of the Bullet. In both cases, a dark and compact gravity source, possibly a black hole, has an important role. One scenario is the "explosion model" in which an expanding gas shell of the supernova remnant passes by a static black hole. The black hole pulls the gas very close to it, giving rise to an explosion, which accelerates the gas toward us after the gas shell has passed the black hole. In this case, the astronomers estimated that the mass of the black hole would 3.5 times the solar mass or larger. The other scenario is the "irruption model" in which a high speed black hole storms through a dense gas and the gas is dragged along by the strong gravity of the black hole to form a gas stream. In this case, researchers estimated the mass of the black hole would be 36 times the solar mass or larger. With the present dataset, it is difficult for the team to distinguish which scenario is more likely.

Theoretical studies have predicted that 100 million to 1 billion black holes should exist in the Milky Way, although only 60 or so have been identified through observations to date. "We found a new way of discovering stray black holes," said Oka. The team expects to disentangle the two possible scenarios and find more solid evidence for a black hole in the Bullet with higher resolution observations using a radio interferometer, such as the Atacama Large Millimeter/submillimeter Array (ALMA).


For more information:

http://www.nro.nao.ac.jp/en/news/2017/0116-yamada-e.html

http://www.astromart.com/news/news.asp?news_id=934

http://www.astromart.com/news/news.asp?news_id=784

http://www.astromart.com/news/news.asp?news_id=638

http://www.astromart.com/news/news.asp?news_id=481

http://www.astromart.com/news/news.asp?news_id=1298

http://www.astromart.com/news/news.asp?news_id=1535

http://www.astromart.com/news/news.asp?news_id=1521

http://www.astromart.com/news/news.asp?news_id=1480

http://www.astromart.com/news/news.asp?news_id=1440

http://www.astromart.com/news/news.asp?news_id=1335

http://www.astromart.com/news/news.asp?news_id=1223


AstroMart News Archive:

http://www.astromart.com/news/search.asp?search=.+














del.icio.us   Digg it   Reddit   Twitter   MySpace   Stumbleupon  

All times are in (GMT-8:00) Pacific Standard Time Zone  
Astronomy News | Telecope Classifieds | Telescope Auctions | Telescope Reviews | Telescopes | Telescope and Astronomy Forums | My Account | Help | RSS